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Mad, bad and dangerous to know: the
biochemistry, ecology and evolution of slow
loris venom
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Abstract

Only seven types of mammals are known to be venomous, including slow lorises (Nycticebus spp.). Despite the
evolutionary significance of this unique adaptation amongst Nycticebus, the structure and function of slow loris
venom is only just beginning to be understood. Here we review what is known about the chemical structure of
slow loris venom. Research on a handful of captive samples from three of eight slow loris species reveals that the
protein within slow loris venom resembles the disulphide-bridged heterodimeric structure of Fel-d1, more
commonly known as cat allergen. In a comparison of N. pygmaeus and N. coucang, 212 and 68 compounds were
found, respectively. Venom is activated by combining the oil from the brachial arm gland with saliva, and can cause
death in small mammals and anaphylactic shock and death in humans. We examine four hypotheses for the
function of slow loris venom. The least evidence is found for the hypothesis that loris venom evolved to kill prey.
Although the venom’s primary function in nature seems to be as a defense against parasites and conspecifics, it
may also serve to thwart olfactory-orientated predators. Combined with numerous other serpentine features of
slow lorises, including extra vertebra in the spine leading to snake-like movement, serpentine aggressive
vocalisations, a long dark dorsal stripe and the venom itself, we propose that venom may have evolved to mimic
cobras (Naja sp.). During the Miocene when both slow lorises and cobras migrated throughout Southeast Asia, the
evolution of venom may have been an adaptive strategy against predators used by slow lorises as a form of
Müllerian mimicry with spectacled cobras.
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Introduction
The study of the venomous systems of animals, including
invertebrates, snakes, lizards and frogs, has provided re-
markable insight into their interactions with predators,
prey and competitors, as well as yielding promising med-
ical advances through development of pharmacological
agents [1]. Offensive and defensive venom systems in
mammals are far rarer and are comparatively little known.
Of the species known or suspected to be venomous, virtu-
ally nothing is known about Haitian solenodons (Solenodon
paradoxurus); studies of the venom of European water
shrews (Neomys fodiens) and American short-tailed shrews
(Blarina brevicauda) are restricted mainly to capture-
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reproduction in any medium, provided the or
recapture studies; researchers still cannot resolve if
European hedgehogs (Erinaceus europaeus) are truly ven-
omous [2,3]; recent detailed research on the platypus
(Ornithorhynchus anatinus) reveals strong convergence
between reptile and mammal venomous systems [4]; the
oral secretions of vampire bats have only recently been in-
tensively studied, revealing a suite of complex venomous
proteins [5]. Whittington et al. [4] point out that the study
of chemical and genetic aspects of venom can help to elu-
cidate the evolution of this rare trait in mammals. Dufton
[6] posits that our knowledge of mammal venom is only
in its infancy, and that even more species of mammals
may harbour venomous adaptations.
The slow lorises of Southeast Asia (Nycticebus spp.)

are the final mammals, and the only primates, which
harbour toxins. The venom is usually delivered after a
threatened loris raises it arms above its head, combining
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fluid of its brachial gland (Figure 1) with saliva [7]. In
this classic defence posture (Figure 2), the mouth can
quickly be moved to the brachial gland to combine the
fluids, and the mixture applied to the top of the head for
defence or kept in the mouth to bite [8]. Alterman [8]
also demonstrated that the slow loris’ procumbent an-
terior incisors, or toothcomb, normally ascribed feeding
and grooming functions, are effective as a venom deliv-
ery system by conducting liquid upward. Despite the an-
imals’ small size (~300 g – 2 kg), slow loris bites are
intensely painful, and in both humans and loris conspe-
cifics can cause oedema, fester, take weeks to heal, and
leave loss of fur and scarring. In extreme cases, bite
recipients may enter anaphylactic shock, sometimes re-
sulting in death [9-11] (Research report to the Nocturnal
Primate Research Group, Oxford Brookes University).
Despite the extraordinary nature of this adaptation
within a primate, its function and chemistry still remains
little known. In this review, we detail current knowledge
of the ecology and biochemistry of loris venom, and pro-
vide current data for the most probable hypotheses re-
garding its function. Any research carried out by the
Figure 1 The slow loris brachial gland (dark oblong area on the
inside of the elbow region).
authors was approved by the Oxford Brookes subcom-
mittee for ethics in animal research and followed guide-
lines set out by the Animal Behaviour Society.

Review
Dufton [6] suggested that local folklore may be the best
starting point for uncovering new venomous taxa.
Adopting such an approach, Dumbacher et al. [12] char-
acterized potent defensive toxins in the skin and feathers
of New Guinean birds – the pitohuis. Delving further
into anthropological knowledge, Dumbacher et al. [13]
also identified batrachotoxins in the New Guinean blue-
capped ifrita and in melyrid beetles, which are consumed
by the birds and may be the source of the toxin. Simi-
larly, folklore in Thailand, Laos, Myanmar, Indonesia,
Cambodia, China and Vietnam can be traced back cen-
turies, revealing tales of the loris’ bad taste and toxic
bite; although intriguing, until now, these stories have
been collected on an ad hoc basis [10,14].
Nekaris [15] and Nijman and Nekaris [16] systematically

collected such folktales in Java, where beliefs in the toxicity
of slow lorises varied across six regencies. The slow loris’
bite was widely regarded to be dangerous or fatal in four of
the five regencies visited. Knowledge of loris venom ex-
tends to Indonesian pet traders who routinely cut out the
lorises’ front teeth to prevent their biting potential pur-
chasers [17]. In Sukabumi Regency, the removed teeth
were also believed to possess black magic properties.
Respondents in five of six regencies linked lethal potency
of lorises to their blood. For example, in one community in
Sukabumi Regency, residents recount that before their an-
cestors went to war, they smeared their swords in loris
blood. When they pierced their enemies with the anointed
weapons, the wounds would fester, and death would follow.
In Tasikmalaya and Garut Regencies, residents described
how if a drop of blood or semen touched the ground, a
landslide would follow, whereas in Sukabumi Regency, if
the placenta of a loris touched the ground, nothing could
ever grow there again. In Sumedang and Ciamis Regencies,
however, few myths prevailed and lorises were considered
economically valuable and suitable for hunting.
Local beliefs only give us a starting point to search for

the nature and function of slow loris venom. Alterman
[8] was the first researcher to show with in vivo experi-
ments that loris venom can actually kill other animals.
In a set of experiments where he injected secretions
from captive greater slow lorises (N. coucang) into mice,
Alterman discovered that loris venom was only deadly
when secretions from a loris’ brachial gland (brachial
gland exudates – BGE) were combined with saliva.
Death rates of mice differed based on the extract used to
dissolve the toxin. From this Alterman concluded that
lorises may possess two toxin types: one fast-acting
aqueous toxin and a second toxin that enters the



Figure 2 Slow lorises in defensive posture, whereby the arms are raised above the head to combine saliva with brachial gland
exudate: N. menagensis, N. javanicus and N. coucang.

Figure 3 Comparison of pygmy and greater slow loris LC/MS
profiles and 4 A and B sequence alignment.
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circulatory system more slowly, although he was not able
to characterise this biochemically.
Krane et al. [18] extracted BGE without saliva from a

single old zoo-housed individual – probably N. bengalensis.
Of several methods used, high performance liquid chroma-
tography (HPLC) was the most effective at identifying or-
ganic compounds in the sample. In particular, they found
that protein in the BGE shared a high degree of sequence
similarity with the disulphide-bridged heterodimeric struc-
ture of Fel-d1, more commonly known as cat allergen.
They interpreted the propensity of only some individuals
to suffer anaphylaxis from loris bites as consistent with
variable sensitivity to a protein allergen.
Following this, Hagey et al. [7] studied eight captive

pygmy slow lorises N. pygmaeus and eight captive greater
slow lorises N. coucang. When examined by Hagey et al.
[7] using gas chromatography/mass spectrometry (GC/
MS), brachial gland exudates contained a complex mixture
of volatile and semi-volatile compounds. They observed
212 different compounds in N. pygmaeus, identifying a
wide variety of aromatic compounds consistent with diet-
ary absorption from a species maintained on a captive fru-
givorous diet, and a concurrent difficulty in complete
metabolism of this chemical class of compounds. The
remaining identified compounds were a series of C4-C7
aldehydes, ketones, and acetates. They found 68 different
compounds present in N. coucang, 33 (48%) of which were
unique to the species. To examine the exudate oil contents
by a different approach, samples from both loris species
were examined by nano-electrospray ionization mass
spectrometry (nano-ESI-MS). Although the sugars glu-
cose, neuraminic acid, and a variety of fatty acids (fa) were
detected, none were present in amounts sufficient to con-
stitute the exudate oil itself. Notably absent from the pro-
file were phospholipids.
Liquid chromatography/mass spectrometry (LC/MS)

analysis of the brachial gland secretion from both species
also revealed that each contained a single dominant
protein component, molecular weight 17.6 k (Figure 3).
Both taxa contained two isoforms (N. pygmaeus – 17671
and 17601 daltons; N. coucang – 17649 and 17610 dal-
tons). Reduction of the disulfide bonds in the 17.6k pep-
tide revealed that it was a heterodimer of two smaller
peptides, molecular weights 7.8 kDa (α-chain) and 9.8
kDa (β-chain) linked together by two disulfide bridges.
Sequencing of the α/β-chains showed that the loris bra-
chial gland peptide is a new member of the secre-
toglobin (uteroglobin/Clara cell 10k) family. As found by
Krane et al. [18], loris peptide was assigned to subfamily
4, with a close sequence homology with domestic cat
Fel-d1 chain I peptide [19,20] (Figure 4 A and – B). The
secretoglobin family is characterized by small lipophilic
peptides found as major constituents in a variety of
mammalian secretions. These proteins are all α/β-homo-
and heterodimers stabilized by two or three intramo-
lecular cystine disulfide bonds. In what is termed the
uteroglobin-fold, the α- and β- monomers are formed



Figure 4 NH2-terminal amino acid sequences of the pygmy loris α- and β-chains that make up the 18k major peptide of brachial
gland exudate. (A) Comparison between the pygmy loris α-chain sequence and members from each clade of the α-chain superfamily: 1.
secretoglobin (3288868); 2. mouse salivary androgen binding protein (19919338); 3. mouse putative protein 20948528; 4. loris brachial gland
secretion; 5. domestic cat allergen; 6. human genome putative protein; 7. uteroglobin (6981694); and 8. lipophilin (5729909). Numbers refer to
NCBI accession numbers. Homologous amino acids are highlighted in grey. (B) Comparison between the pygmy loris β-chain sequence and two
members with similar β-chains. 1. domestic cat allergen (423192); 2. loris brachial gland secretion β-chain; and 3. mouse salivary
protein (19353044).
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from grouping four α-helices, and (for the two mono-
mers) the combined eight α-helix bundle folds to form a
pocket for the binding of different hydrophobic mole-
cules [21].
This simple structural motif of the uteroglobin fold

stands in sharp contrast to the wide array of biological
activities assigned to this group of proteins. In the loris
17.6k protein, Hagey et al. [7] hypothesised that the
smaller α-chain may form a slightly pyramidal-shaped
lid that is hinged along one edge by the two disulfide
bridges to the larger β-chain, forming a unit roughly in
the shape of a cigar box. The α-subunit may have a shal-
low hydrophobic centre in the lid, which sits over a
similar but deeper pocket in the β-chain box, forming a
molecular snare for a small hydrophobic molecule. They
based this hypothetical potential, as similar molecular
docking of hydrophobic molecules like progesterone,
polychlorinated biphenyls and retinol has been shown
using the crystal structure of human uteroglobin [22].
Other than the disulfide bridges located together in the
“hinge”, only these interacting hydrophobic regions hold
the lid to the box. When the snare is in the hydrophobic
environment of the secreted oil, the lid is free to open
and the box can accept a signaling molecule. One func-
tion for the box would be to hold a species-specific mes-
sage, and the varying compositions of the α/β chains in
different species support this idea [23]. Cats heavily con-
taminate their environments with Fel-d1, using the pro-
tein not as a toxic defence, but as a species recognition
molecule [24]. What evidence is there that loris toxin
has a function in nature or in experimental settings?
Does it seem to be more than just a communication de-
vice? We review four potential hypotheses that have
been explored to various degrees.
Prey as target
Slow lorises are fauni-frugivores that consume a wide
variety of animal prey and plant materials, including
those that contain considerable amounts of secondary
metabolites [25,26]. They easily overcome relatively large
prey including birds, bats, lizards and tarsiers; venom
could be useful in subduing these animals. Many animals
use de novo or acquired toxins to subdue prey, broadly
classed in two types: excitatory and depressant [27]. Ex-
citatory toxins induce sustained contraction paralysis,
whereas depressant toxins induce a slow and flaccid par-
alysis. Short-tailed shrews use depressant toxins to im-
mobilise prey, which they cache for later consumption
[28]. Excitatory toxins are useful for predators that may
need to release their prey, and should be less likely in an
arboreal environment where immobilised prey may fall
to the forest floor [29].
Until now, we have found no evidence to support this

hypothesis. Although loris venom can kill small prey,
venom is not used to paralyse it, and we know of no in-
stance of lorises caching prey [8]. Of hundreds of field
hours and observations of prey capture events, lorises
consume prey rapidly and effectively with powerful jaws
and sharp teeth, and it does not seem that venom is re-
quired to carry this out. This does not rule out the possi-
bility that they sequester secondary compounds from
certain foods.

Predators as target
Alterman [8] held that loris venom was almost certainly
a defence against predators, and that loris venom is used
to anoint adults and young against predators. A single
observation of a Javan slow loris (N. javanicus) mother
heavily covering her offspring with venom before leaving



Nekaris et al. Journal of Venomous Animals and Toxins including Tropical Diseases 2013, 19:21 Page 5 of 10
http://www.jvat.org/content/19/1/21
it for a few hours provides the only support for this hy-
pothesis so far from the field, during a 16-month study
of the ecology of slow loris venom (Nekaris, pers. obs.).
Slow lorises have classically been described to avoid
predators by crypsis [30]. Morphological specialisations
of loris postcranial anatomy allow them to remain still
until a potential threat has passed. Thickened nuchal
skin may serve as a last-minute defence if a predator
does strike. Forbey et al. [31] predicted that less mobile
animals that cannot readily flee from predators will be
more likely to exploit highly-toxic secondary metabolites
as camouflage. Loris mobility is ‘reduced’ beyond mor-
phological constraints in two ways. Lorises go through a
period of seasonal torpor during periods of food scarcity
[10]; travelling and social behaviour substantially de-
crease, with lorises sleeping alone rather than in small
groups. Lorises also ‘park’ their young from the age of 6
weeks. Locomotor dexterity is undeveloped; they cannot
escape rapidly, their ability to allogroom is limited, and
their immunological parasite-defence machinery is not
yet fully developed. Chewing material and licking or rub-
bing it on to fur has been observed in many mammals
[32,33]. Through this mechanism, chemically-defended
mothers may pass defences to their offspring [34,35].
Both de novo and acquired toxins can serve to make
prey unpalatable, meaning that they survive encounters
with predators and escape unharmed [36]. This seques-
tration of toxins may also serve as a form of camouflage.
Many animals ingest secondary metabolites and accu-
mulate them in their tissues, including pitohuis (Pitohui
sp.) that sequester batrachotoxins from melyrid beetles
(Cleroidea) [12]. That such toxins may not have been
detected in captive lorises is not surprising – even the
highly-noxious dendrobatid poison-dart frogs do not
contain detectable amounts of toxin when raised in cap-
tivity [13,37].
Evidence from both the lab and the field suggest that loris

venom may repel some predators. Alterman [8] presented
BGE+saliva to potential predators. He found that loris se-
cretions repelled cats (Panthera pardis, Panthera tigris,
Neofelis nebulosa), sun bears (Helarctos malayanus), and
civets (Paradoxurus hemaphroditus, Arctictis binturong).
Nekaris (unpublished data) reconstructed this experiment
with sun bears (n = 2) and Bornean orangutans (Pongo
pygmaeus, n = 2). Whereas both bears not only rapidly
retreated from swabs permeated with loris BGE, but also
began stereotypic pacing, both orangutans (known loris
predators, Hardus et al. [38]) consumed the swabs and the
related foliage. In all cases, the reactions were in less than
a minute showing the effectiveness, or lack thereof, of
the scent.
If loris venom is effective against olfactory-orientated

predators, we would expect that few animals would be
lost to such predators [39]. During three long-term field
studies using radio-tracking, no loris has been known to
be lost to a nocturnal mammalian predator [26,40-42].
Indeed, lorises have been observed to walk within meters
of civets and small leopard cats, even when carrying
young, with seeming ambivalence ([30] and Nekaris and
Rode, personal observation).

Ectoparasites as target
In mammals, fur is the first line of defence against con-
sumers, and may serve as a repository for chemicals [43].
In social animals like primates, grooming typically serves a
key function for reducing parasites [44]. For lorises, how-
ever, during solitary torpor and infant parking, anointment
with a secondary compound could provide an essential
line of defence, and can also protect areas of the body
where a loris cannot groom itself [45]. In birds, many fac-
tors influence ectoparasite reduction; nest composition
may be modified by adding leaves with antiparasitic prop-
erties, or shape of the nest may be altered, influencing in-
ternal temperature [31,46]. Lacking nests, anointing
infants directly would provide a powerful chemical alter-
native for slow lorises.
Prevalence and intensity of ectoparasite infestation

among the Lorisidae is extremely low compared to other
primates [47]. While eight of nine wild studies of six
taxa revealed no or few ectoparasites (Loris tardigradus,
L. lydekkerianus lydekkerianus, L. l. nordicus, Nycticebus
pygmaeus, N. bengalensis, N. javanicus), only one study
of N. coucang conducted during the wet season found a
small amount of ticks in all animals [48]. In a prelimin-
ary experiment to test the potency of loris venom on ec-
toparasites, Nekaris (unpublished data) used loris BGE+
saliva diluted three times with purified water and applied
this solution with a cotton swab to 12 individual leeches.
Leeches were collected in the village and weighed ap-
proximately 0.03 g each. All leeches died upon coming
into contact with the solution (range 128 sec – 480 sec;
mean = 265 sec ± 104.4).

Conspecifics as target
The loris brachial gland may mirror the defensive spur of
the male platypus, which has evolved as a seasonal offen-
sive weapon used only during the breeding season, and
could explain why loris venom is only sometimes potent
to its recipients [4]. Alternatively, the venom could be
used for intersexual competition. Male lorises have large
testes, which could be a sign of high male-male competi-
tion for females. The few days during which mating can
occur are replete with intense competition and fighting
between males and females. Throughout the year, females
maintain tightly defended territories that they share only
with their offspring and one to three other males [15]. Bite
wounds in captivity and in the wild have been a major
cause of morbidity and mortality, with fatal head wounds
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being the most common [26,49]. In a review of 30 years of
morbidity records from North American zoos, Fuller et al.
[50] found that trauma was a significant contributor of
mortality to both adult and immature animals. Indeed,
several animals died following bite wounds that were
chronically non-healing, leading to necrosis, septicaemia,
lung edema, and cellulitis. These non-healing wounds are
also frequent in rescue centres, with multiple veterinarians
stating that if a loris bites another, its chances of surviving
are slim [10].
It is possible that venom is costly to produce and

lorises may only activate it when they need it. In one of
two recorded cases of a human entering anaphylactic
shock after a loris bite [9], the loris delivering the bite
had previously nipped his owner several times. It was
only when the loris had been introduced to a conspecific
with which it fought, and the owner separated the two,
that a potentially deadly bite was delivered, causing the
owner to go into anaphylaxis.
Wounds and scars are often observed in animals sold

on wildlife markets (EJR and KAIN, personal observa-
tion). They also are reported by loris hunters, who reject
wild animals with wounds, as they are not as profitable
[15]. In a study of wild N. javanicus conducted by KAIN
and EJR in West Java, during the study time of 16
months, 13 of 28 animals (46%) were found to have
wounds, scars or broken/missing/stiff digits. There was
no difference between sexes in adult and sub-adult ani-
mals (χ2 = 3.1, df = 1, p = 0.543, n = 25). All four adult
males had high relative testes volume (> 3.5 mm2) and
had wounds, suggesting possible intraspecific competi-
tion. In 29 captured wild Nycticebus coucang 52% of
males and 12% of females had fresh or old wounds; the
difference was significant [48]. In five cases where the
authors observed relatively fresh wounds or scars in wild
N. javanicus, injuries healed completely by the next cap-
ture. These included two animals with very severe and
potentially lethal injuries: one head wound of a female
loris resembled a complete removal of half of the head
Figure 5 Male wild Nycticebus javanicus, from Cipaganti near Garut, J
2012 and February 2013, showing his appearance before receiving a
months afterwards.
scalp including the ear; the other injury of a male adult
and its development are shown in Figure 5. Many of
these wounds may originate during mating, as during
the 18-months in Java, agonistic events were rare, but al-
ways occurred during mating. Between bouts of fighting,
male lorises have been observed to lick their brachial
gland and anoint themselves heavily, presumably with
toxin (Additional file 1). Perhaps the toxin began as a
warning signal [7], but over time, evolved into a true
venom against other lorises, with the instant reaction of
a loris to cover its head from an agonistic conspecific, as
a reaction to protect its most vulnerable body part.

Evolution of loris venom
Field and laboratory studies are still ongoing as re-
searchers attempt to understand the function and eco-
logical role of loris venom. Furthermore, upcoming
analyses of the first samples of venom from wild lorises
may address some of the gaps presented here. But what
event in the evolutionary history of slow lorises might
have driven the venom selection? Deception provides the
basis for mimicry in nature. Many animals possess pro-
tective colouration that deceives predators by masquerad-
ing as something else [51,52]. Mimicry is common among
insects [53], with many caterpillars (Lepidopteran larvae)
displaying extremely convincing imitations of various spe-
cies of snake, both in appearance and behaviour [54].
Mimicry among vertebrates is less common and in mam-
mals extremely rare [55]. Across the natural world im-
perfect mimicry is widespread [56]. In order to gain
protection, a mimic need not perfectly replicate its model,
as long as it is similar enough to cast uncertainty in the
mind of the predator [55,57]. This replication may be apo-
sematic, olfactory, auditory or a combination of the three
with the ultimate goal to cast uncertainty into the mind of
a both generalist and specialist predators, as well as
remaining cryptic to its own prey.
Still’s [58] was the first anecdotal account of the un-

canny resemblance of the slender loris (Loris sp.) to a
ava, during three successive captures in April 2012, November
severe conspecific bite wound, just afterwards, and 3
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cobra. Other authors have since remarked on lorises’
snake-like characteristics in regards to their defensive
postures [59,60] and serpentine gait [61-63]. The dis-
tinctive expiratory pant-grunt produced during aggres-
sive encounters by slow lorises (Nycticebus) [59,64,65]
and slender lorises (Loris) [58,60] resembles remarkably
the raspy hiss of a cobra during threatening displays
[66]. Furthermore, slow lorises display facial markings
undeniably akin to the eyespots and accompanying
stripes of the spectacled cobra (Naja naja) (Figure 6).
The dark contrasting dorsal stripe of these two species
also closely resembles the body of a snake, particularly
when viewed from above. We suggest in its evolutionary
past that Nycticebus gained an adaptive advantage
through Müllerian mimicry of Naja naja. For Müllerian
mimicry to be effective, it is crucial that the animal
mimic is recognised by a predator (or dupe) as another
unpalatable or noxious model it is imitating. The mim-
icking of another’s warning signals consequently reduces
the threat of attack [67,68]. For the predator to recognise
the animal as an unpalatable prey species, the predator
must already be aware of the other species’ undesirable
characteristics [67]. Accordingly, at some point in time
in their shared evolutionary history, the ranges of the
mimic, the model and the dupe must have overlapped
[53,57,69]. For mimicry to occur in one species, but not
in other closely related species, would indicate a specific
Figure 6 Potential mimicry of spectacled cobras in Javan and
Bengal slow lorises (1). Javan slow loris (2) Spectacled cobra (rear
view) (3) Spectacled cobra (front view) (4) Bengal slow loris.
ecological pressure was driving the selection of mimetic
traits in only that species, which was absent in those
closely related to it [53,68].
We postulate that the Nycticebus mimicry evolved

during a period of co-existence with Naja naja, at a time
when environmental pressures would have favoured its
selection. The genus Naja appears to have originated
and diversified in Africa, subsequently travelling into
Eurasia and across to Asia around 16 million years ago
(MYA) [70-72]. These dates roughly correspond to the
occurrence of a continuous land bridge from Africa to
Asia in the early Miocene [73]. The origin of Naja naja
in Asia is estimated at approximately ten MYA, where it
still persists today in India, Pakistan, Sri Lanka and
Bangladesh [71,72]. The earliest fossil record of lorises
in Asia dates to eight MYA [74].
Around the time of a potential selection event, the cli-

mate in the Southeast Asia underwent a number of dra-
matic fluctuations, largely altering the vegetation [74-77].
Coinciding with intermittent land bridge formations, a
band of drier more seasonally adapted woodland ran from
north of the Malay Peninsula down as far as Java replacing
the more tropical forests [76]. This habitat alteration may
have benefitted some animals in allowing an easier migra-
tion south through the more savannah-like landscape, but
for others it acted as a species isolation barrier [78,79]. For
Nycticebus this change in habitat to a more open
savannah-like environment and a different array of
predators may have provided the initial selection impetus
towards mimicry.
Lorises are arboreal primates, but when no continuous

canopy is available, will occasionally venture over ground
[80]. Terrestrial travel increases predation risk and is nor-
mally only attempted when no other option is present
[81,82]. The climatic changes during the Pleistocene and
the associated succession in vegetation from tropical forest
to a more open savannah grassland environment may have
increased the need for early Nycticebus to travel over
ground. Consequently, the change in predation pressure
caused by this adaptive shift may have triggered the move
towards mimicry, whereby an advantage from mimicking
a predator like Naja naja was gained. For aerial predators
in particular, with their vision hampered by long grass,
glimpses of the unmistakable markings of a spectacled
cobra meandering across the ground between trees may
have been enough to deter or at least postpone their
intended attack.

Conclusion
The theoretical framework discussed in this paper pro-
vides some support to hypotheses regarding the bio-
chemistry, ecological function and evolution of slow
loris venom. Local knowledge, severe injuries to conspe-
cifics and medical records of humans and lorises
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cumulatively point towards the fact that loris venom is
indeed a biological reality and potentially dangerous to
its receiver [83]. Such information could be valuable to
slow loris conservation projects. Detailed information on
the ecology, habitat use and phylogenetic relationships
of slow lorises is still scarce, and future studies may help
to shed light on this topic. A closer examination of slow
loris predator–prey, host-parasite and intraspecific inter-
actions is vital to unravelling the complex network of se-
lection pressures that have influenced the slow loris
phenotype we see today.
Additional file

Additional file 1: Video showing the components of the slow loris
venom system, and an adult male anointing himself with venom
during a conspecific battle for a female.
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