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Arthropods play a significant role in ecosystems as prey for animals such as
insectivorous primates. The venomous Javan slow loris (Nycticebus javanicus) is a
nocturnal primate endemic to the island of Java, Indonesia. It remains unknown if
its venom is partially sequestered from noxious arthropod prey. We studied the
little-known arthropod community in a rural agriculture system in West Java,
Indonesia, in order to investigate the potential prey and source for sequestration
of venom. We found specimens of the partially noxious insect orders Lepidoptera,
Hemiptera, Coleoptera, Hymenoptera, Orthoptera and of the class Arachnida in
slow loris foraging trees in an agricultural area inWest Java, Indonesia. To examine
the effects of environmental conditions on the abundance of this food source,
arthropods were trapped every two weeks for five months, using sweep net transects,
Malaise and pitfall traps. Trap type had a significant effect on taxa caught. Wind
strength negatively affected the number of Lepidoptera captured in theMalaise trap
and humidity had a confounding effect on Orthoptera caught by sweep net. Despite
the short-term nature of our study, by using a combination of trapping methods, we
identified a relatively high diversity of insects in a human-dominated landscape. Our
results can be used as a basis to understand the proximate and ultimate factors
shaping the use of venom by the slow loris as a primate.

Keywords: Arachnida; Indonesia; Insecta; Malaise trap; Nycticebus; sweep net

Introduction

Arthropods play a significant role in all forest communities, especially in the tropics
(Basset et al. 2003). Arthropods are important pollinators, and affect plants through
grazing, influencing primary production (Lowman 1982). Furthermore, arthropods
accelerate nutrient cycling, mediate plant competition (Clay et al. 1993), and are prey
for carnivores (Miller 1993). Some animals sequester toxins from noxious arthropod
prey (Dumbacher et al. 2009; Saporito et al. 2009). Arthropods have shown to be an
important food source for the loris genusNycticebus (Streicher 2004; Wiens et al. 2006;
Swapna et al. 2010; Starr and Nekaris 2013), the only venomous primates (Nekaris
et al. 2013). Slow lorises activate their toxin by mixing brachial gland exudates (BGE)
with saliva, resulting in a venomous bite (Alterman 1995; Hagey et al. 2007). Although
the venom’s evolutionary purpose remains unknown (Nekaris et al. 2013), it is likely to
be a predator and ectoparasite deterrent, and effective in intraspecific competition
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(Alterman 1995; Nekaris et al. 2013). Preliminary analyses of BGE show that the
chemical composition of the venom of wild lorises brought into captivity changes over
time, suggesting that some venom components may be partially extracted from food
sources such as arthropod prey (Nekaris et al. 2013). If this hypothesis holds true,
variation in arthropod abundance could have an effect on the ability of slow lorises to
sequester their venom and potentially influence slow loris fitness.

While data on venom composition of Nycticebus are not yet available for a
comparison, here we investigated the potential arthropod prey of Javan slow lorises
(N. javanicus) in a rural agriculture system in West Java, Indonesia. We report
noxious taxa in the arthropod community and explore the effects of methodological
(trap type: Southwood and Henderson 2000) and environmental abiotic factors
(ambient temperature: Lessard et al. 2011; humidity: Gao et al. 2011; rainfall:
Tanaka and Tanaka 1982; lunar illumination: Tigar and Osborne 1999) on the
abundance of potential arthropod prey.

Methods

Study site

Research was conducted from February to June 2013 in the agricultural gardens near the
village of Cipaganti, regency Garut, province West Java (7°6ʹ6″–7°7ʹ0″S, 107°46ʹ0″–
107°46ʹ5″E; Figure 1). The study site was located at 1300–1750 m above sea level (asl),
and was the same area where slow lorises were radio-tracked (Rode-Margono
et al. 2014). Cipaganti lies on the foothill of the mountain range of the active volcano
Mount Papandayan. While Mount Papandayan is recognized as a Nature Reserve
(Cagar Alam) the agricultural areas and surrounding areas are not protected (Rode-
Margono et al. 2014). The agricultural area is called talun by Sundanese people, and
consists of a mosaic-like landscape that includes cultivated fields, abandoned fields,
bamboo patches, interspersed with single trees and small tree plantations. The area
was subject to a dry period from May until October and a wet period from November
toApril (Rode-Margono et al. 2014).We chose two adjacent trapping sites at 1425m and
1460 m asl, c.200 m apart. Both were tea fields enclosed by bamboo (Gigantochloa spp.),
green wattle (Acacia decurrens) and Cajeput trees (Melaleuca leucadendra).

Data sampling

We trapped arthropods at each area once every two weeks during three consecutive
nights. As the effect of arthropod traps varies per order and forest stratum (Basset
et al. 2003), we used different trap types to cover different arthropod orders and
multiple forest strata. We placed the Malaise trap in the centre of each area and used
it to capture flying arthropods. Intercepted arthropods moved upwards inside the trap
and subsequently fell into a collection pot filled with a 70% alcohol solution (Campos
et al. 2000). At each site, we established a line transect of 50 m in length between the
rows of tea bushes to the left and right of the Malaise trap. At each step we took a
sweep on each side of the researcher. After five steps (10 sweeps) we emptied the net
and recorded the contents. We generated three random GPS locations in each area
and placed in total six pitfall traps to target ground dwelling arthropods (Topping
and Sunderland 1992). We left the Malaise and pitfall traps for 12 hours
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(18:00–06:00) before collecting the contents. We walked each sweep net transect once
every trapping night. All collected arthropods were included in the research. Orders
were identified following McGavin (2001). We collected the environmental factors
minimum ambient temperature, rain (both calculated for the previous 24 h), ambient
humidity, cloud cover (estimated to the nearest 10%) and wind using the weather
station Nexus TFA 30. 1075, recording one data point per hour. We retrieved the
exact lunar illumination in percentage from the software NEW MOON 1.0 for lunar
illumination (Thomas 1998). When the moon was below the horizon an illumination
of 0 was recorded.

Data analysis

As there was no significant differences in total arthropod abundances captured with
different trap types between the two areas (Mann–Whitney U tests; Malaise trap:
U = 40.5, p = 0.345; n = 21, sweep net: U = 19, p = 0.114; n = 27; pitfall trap: U = 9,
p = 1; n = 9) data were merged. We focused on the most abundant arthropod taxa
that are also reported to be eaten by lorises (adult Lepidoptera, Hymenoptera,
Orthoptera and Arachnida) for statistical tests. As environmental factors we used
minimum temperature per night, average humidity in the previous 24 h (0600–0600),
rainfall in the previous 24 h, wind in the previous 24 h, average lunar illumination

Figure 1. Map of the study location Cipaganti near Garut, West Java.

Journal of Natural History 3
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during this night (percentage of the night with moon over the horizon multiplied by
the moon phase). Because abundance data were not normally distributed and sample
size per trap type and order too small, we used non-parametric statistics. We per-
formed Kruskal–Wallis tests for comparing samples of different trap types (number
of insect specimens caught), and Mann–Whitney U post hoc tests with Bonferroni
corrections. We computed Spearman rank correlations to test for correlations
between environmental variables and trap type–order combinations (Lepidoptera
adults–Malaise trap, Lepidoptera adults–sweep net, Orthoptera–sweep net,
Arachnida–sweep net). All tests were performed with SPSS 20.0 and significance
level set to 0.05.

Results

We conducted 21 trap nights for Malaise traps, 17 for sweep nets and nine for pitfall
traps. The total abundance of different arthropod taxa caught is shown in Table 1,
with potentially noxious taxa specified.

Focusing on the most abundant taxa, trap type has a significant influence on the
number of animals captured (Figure 2 and Table 2). For each combination of the
taxa and their most efficient trap type, we used Spearman Rank correlations to test
their correlation with the different environmental variables.

When checking the correlations between the different arthropod groups–trap type
combinations and environmental factors, the abundance of adult Lepidoptera cap-
tured by Malaise trapping correlated significantly negatively with wind strength
(R = −0.824, p = 0.006, n = 9). The abundance of Orthoptera captured with sweep
nets correlated significantly negatively with average humidity (R = −0.790, p = 0.011,
n = 9). All other combinations showed no significant correlations with any of the
abiotic factors collected.

Discussion

Although arthropods in their various roles in tropical forest communities are of great
interest to science, studies have generally focused on natural forest areas (e.g. Basset
et al. 2003). The arthropod communities on Java have been particularly neglected
(Maschwitz et al. 2000; Tati-Subahar et al. 2007), possibly because more than 90% of
Java’s natural vegetation has been converted into human-dominated landscapes,
agricultural areas and to some degree forest plantations (Smiet 1992; Lavigne and
Gunnell 2006). Research on Java on the effect of arthropods on other wildlife is
equally absent, as little research has been done on wildlife in general, except for some
island endemics such as the Javan rhino (Fernando et al. 2006), Javan gibbon
(Supriatna 2006), Javan langur (Nijman 2002) and Javan hawk-eagle. The wide-
spread talun agriculture system on Java that consists of a patchwork of various
habitats and is often located adjacent to more natural vegetation, such as national
parks, may hold interesting arthropod communities. Likewise, many species of wild-
life show a certain degree of flexibility and cope well with the semi-natural habitats
left on Java, e.g. Javan slow lorises (Rode-Margono et al. 2014), common palm civets
(Corlett 1998), or leopard cats (Rajaratnam et al. 2007). Our results show for the first
time that the talun agricultural system on Java harbours a diverse arthropod com-
munity. During 21 capture nights, using three different trap types, we captured 1185
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arthropod specimens from nine different insect orders as well as spiders, millipedes
and centipedes.

Capture success was not equally distributed amongst trap types and arthropod
taxa (Campos et al. 2000; Southwood and Henderson 2000), a phenomenon that is
often regarded as trivial but rarely documented. Both the Malaise trap and pitfall
trap use a passive method of sampling, whereas the sweep net represents an active

Figure 2. Mean abundance of the most frequently captured arthropod taxa per trap type.
Sample size: Malaise trap n = 21, sweep net n = 17, pitfall trap n = 9. Error bars: ± 1 SE.

Table 2. Mean abundance and standard deviation of the most frequently captured arthropods
per trap type.

Malaise trap Sweep net Pitfall trap Kruskal–Wallis p n

Lepidoptera adult 12.1 ± 11.7a 4.8 ± 3a 0.1 ± 0.3b 22.747 <0.001 47
Hymenoptera 0.1 ± 0.5a 0.4 ± 0.8a 11 ± 10.1b 29.013 <0.001 47
Arachnida 0.1 ± 0.7a 11.3 ± 7b 0.9 ± 1.2a 36.916 <0.001 47
Orthoptera 0.2 ± 0.5a 15.4 ± 9.1b 0.6 ± 0.5a 36.060 <0.001 47

Different superscript letters indicate significant differences between capture rates of the differ-
ent trap types according Kruskal–Wallis tests, while the same letters indicate no significant
differences. Asterisks show results of Mann–Whitney U post hoc tests with Bonferroni correc-
tions. n: total sample size.

6 E.J. Rode-Margono et al.
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sampling method (Southwood and Henderson 2000). Malaise traps are flight inter-
cept traps, pitfall traps focus on ground-dwelling animals, and sweep nets on animals
resting on the vegetation (Townes 1962; Southwood and Henderson 2000). In our
study, adult Lepidoptera (butterflies and moths) were mainly caught in the Malaise
trap and to a lower degree in the sweep net, Orthoptera and Arachnida in the sweep
net, and Hymenoptera (mainly ants) in the pitfall trap. We have not included other
methods of measuring insect abundance or activity that might be effective, such as
bait traps for ants (Yanoviak and Kaspari 2000) or acoustic recordings for
Orthoptera (Riede 1997). The results suggest that studies must consider the effective-
ness of trap types in respect to the arthropod group in question, and be carefully
designed. If food sources of insectivorous species are investigated, studies should
include various types of traps (e.g. Lang et al. 2006).

We found only a small number of significant correlations between trap type–taxa
combinations and environmental factors. Fewer Lepidoptera were captured in the
Malaise trap in strong wind, while humidity had a suppressing effect on the abun-
dance of adult Orthoptera caught with the sweep net (see also Gilbert 1985). Wind
has shown to have a negative effect on the activity of flying insects in several studies
(e.g. Wolda 1977). No relation between arthropod abundance and rainfall in the
previous 24 h was found in our study. This agrees with previous research indicating a
three-week lag between rainfall and a numerical response in arthropod communities
(Tanaka and Tanaka 1982), and seasonality, rather than short-term rainfall, being the
major driver of arthropod abundance in the tropics (Bigger 1976; Wolda 1978).
Studies on the effect of temperature on insect activity found a lower temperature
threshold below which flight will be inhibited (Taylor 1963) and an increase in wing-
beat frequency and activity in Lepidoptera and Diptera with increasing temperature
(Sotavolta 1947). Most studies on the effect of lunar illumination found that flying
insects are more active on dark nights (reviewed in Nowinszky 2004; Lang
et al. 2006). However both studies warn against reaching premature conclusions, as
the effectivity of light trapping (although Malaise traps are regarded as passive traps,
most traps include a white-coloured tent that may enhance attraction to insects) may
be improved in dark nights due to a stronger contrast. As with trap type, effects of
environmental factors were not consistent between different arthropod taxa. We
encourage further longer-term studies in the area to examine further relations with
environmental factors.

Many animals are known to sequester toxins from a noxious arthropod diet and
accumulate them in their tissue. Examples include pitohui birds (Pitohui sp.) that
sequester batrachotoxins from melyrid beetles (Cleroidea) (Dumbacher et al. 2009),
dendrobatid poison-dart frogs that incorporate toxins from a variety of alkaloid-
containing arthropods such as mites, myrmicine ants, coccinellid beetles or siphonotid
millipedes (reviewed in Saporito et al. 2009), and the Asian snake Rhabdophis tigrinus
that uses toxins from toads (Hutchinson et al. 2012). Arthropod prey is a vital part of
the diet of slow lorises, the only venomous primates (Alterman 1995; Hagey
et al. 2007; Nekaris et al. 2013). Dietary choice that includes noxious arthropods
may play a role in the chemical composition of the venom (Nekaris et al. 2013).
Animals are known to feed on gum and other tree exudates, nectar, arthropods, and
to a lower degree on fruit, eggs and vertebrates (reviewed in Nekaris 2014; Rode-
Margono et al. 2014). Lorises prey upon Lepidoptera (larvae and imagines),
Hemiptera, Coleoptera, Hymenoptera and Arachnida (Hladik 1979; Wiens
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et al. 2006; Streicher 2009), all of which include a variety of noxious taxa (Table 1).
Wiens et al. (2006) report 40% of the faecal samples of lorises with remains of ants
and 12.8% with remains of caterpillars. These findings are confirmed by faecal
samples taken at our sites (unpublished data). Although many caterpillars are nox-
ious, we could not include them in our analysis due to insufficient sample size. Future
studies will be needed to solve the question of whether noxious arthropods are dietary
sources for the toxic compounds found in the venom of slow lorises. Our fieldwork
indicates that multiple catching methods are needed to sample the range of potential
noxious prey for Javan lorises in field conditions. The field data may additionally
serve as a first step in understanding proximate and ultimate factors that shape the
use of venom in these primates.
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